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ABSTRACT 

In this paper, we prove common fixed point theorem in intuitionistic fuzzy metric space with the help of. 

occasionally weakly compatible mapping. 
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INTRODUCTION 

Fuzzy set was defined by Zadeh [1]. The.theory of fixed point is one of the basic tools to handleVarious physical 

formulations. Later on the concept of fuzzy set was modified by George and Veeramani.[2].Fixed point theory is one of the 

most dynamic research are in nonlinear analysis. It has a wide range of applicationin the fields such as economics, 

computer science and many other. 

Alaca et. al.[3] in 2006, redefined the notion of Intuitionistic fuzzy metric space as a generalization of KM –fuzzy 

metric space. Alaca et. al. [3], further proved well known fixed point theorem of Banach [4], in intuitionistic fuzzy metric 

space with the help of Grabic[5]. Turkogh et.al.[6] introduced the concept of compatible maps amd compatible maps of 

type (α).and (β).in intuitionistic fuzzy metric space and gave some relation between compatible maps of type.(α).and (β). 

Saadati et al [7 ], Singalotti et. al. [8 ], Sharma and Deshpande [9 ] and many other studied the concept of 

Intuitionistic fuzzy metric space and its applications..Aamri and Moutwakil [10 ] introduced the property E.A. 

Sharma, Kutukcu and Pathak [11 ] introduced the property (S-B) in intuitionistic fuzzy metric space.  

In 2008 Al- Thagafi and N. Shahzad [12 ] introduced the notion of occasionally.weakly compatible mappings..  

PRELIMINARIES 

Definition 2.1 [13]  

A binary operation * : [0,1] × [0,1] →[0,1].is continuous t – norm if * satisfies the following conditions :  

• is continuous, 

• is commutative and associative, 



14                                                                                                                                           Preeti Malviya,Vandna Gupta & V.H. Badshah 

 

 

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us 

 

• .a * 1 = a, for all a ∈ [0,1], 

• a * b ≤ c * d,whenever a ≤ c and b≤d, for all a,b,c,d ∈	[0,1]. 

Definition 2.2 [13] 

A binary operation ⟡ : [0,1] × [0,1] →[0,1].is continuous t- conorm if ⟡ satisfies the following conditions : 

• ⟡ is commutative and associative,  

• ⟡ is continuous, 

• a ⟡0 =a,for all a ∈ [0,1], 

• a ⟡ b≤ c ⟡ d, whenever a ≤ c and b≤d, for all a,b,c,d ∈	[0,1]. 

Remark 2.1 

The concept of triangular norms ( t- norms ) and triangular conorm (t-conorms) are known as the Axiomatic 

skeletons that we use for characterizing fuzzy intersection and unions, respectively. These concepts were originally 

introduced by Menger [14 ] in his stydy of statistical metric spaces, several examples for this concepts where proposed by 

many authors [15 ], [16 ].  

Definition 2.3 [3] 

A 5- tuple ( X,M,N, *, ⟡) is said to be an intuitionistic fuzzy metric space.if X is an arbitrary set, * is a continuous 

t-norm, ⟡ is a continuous t –conorm and M, N are fuzzy set on X
2
 × [ 0, ∞ ) satisfying the following condition :  

• M (x, y, t) + N (x, y, t) ≤ 1, for all x, y.∈ X and t > 0, 

• M (x, y, t) = 0, for all x,y.∈ X, 

• M(x, y, t) = 1, for all x, y.∈ X and t > 0 if and only if x =y, 

• M (x, y, t) = M (y, x, t), for all x, y.∈ X and t > 0, 

• M(x,y,t) * M(y,z, s) ≤ M(x,z,t+ s), for all.x,y,z ∈ X and.s,t > 0,  

• For all x, y ∈ X, M(x, y,.) : [0,∞) → [0,1] is left continuous, 

• limt→∞ M(x,y,t) = 1,.for all.x,y.∈ X and t > 0, 

• N(x, y, 0) = 1, for all x, y.∈ X, 

• N(x, y, t) = 0, for all x, y.∈ X and t > 0 if and only if x =y, 

• N(x,y,t) = N(y,x,t), for all.x,y.∈ X and t > 0, 

• N(x,y,t) ⟡ N(y,z,s). ≥ N(x,z,t+ s), for all.x,y,z ∈ X and.s,t > 0,  

• For all x,y ∈ X, N(x,y,.) : [0,∞) → [0,1] is.right continuous, 

• limt→∞ N(x,y,t) = 0,.for all.x,y.∈ X. 
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(M,N).is called an intuitionistic fuzzy metric space on X. The functions M(x,y,t) and N(x,y,t) denote the degree of 

non- nearness between x and y with respect to t, respectively. 

Remark 2.2 [3] 

An intuitionistic fuzzy metric spaces with continuous t- norm * and continuous t- conorm ⟡. defined.by a *a ≥ a 

and (1-a) ⟡ (1-a) ≤ (1-a), for all. a ∈	[0,1]. Then for all x, y ∈ X, M(x,y, *).is non decreasing and N(x,y,t) is non- 

increasing. 

Remark 2.3 [3] 

Every fuzzy metric space (X,M,*) is an intuitionistic fuzzy metric space if X of the form ( X, M, 1-M, *, ⟡ )such 

that t –norm * and t- conorm ⟡ are associated,i.e. x ⟡ y = 1- ( ( 1-x) * (1-y) ), for any x, y.∈ [0,1]. But the convers is not 

true. 

Example 2.1 [17] 

Let (X,d) be a metric space.Define a * b = min {a,b}and t- conorm a⟡b = max{a,b}, for all x, y ∈ X.and t > 0 

Md(x,y,t) = t ⁄ t + d(x,y).and Nd (x,y,t) = d(x,y) / t+ d(x,y ). Then (X, M,N,*,⟡) is an intuitionistic fuzzy metric space. 

Definition 2.4 [18] 

A pair of self mapping (P,Q) of an intuitionistic fuzzy metric space (X,M,N,*,⟡).is said to be compatible if. 

limn→∞ M ( PQxn, QPxn,t ) = 1 and.limn→∞.N ( PQxn, QPxn,t ) = 0, for every t>0, whenever {xn} is a sequence in X such that 

limn→∞ Pxn = limn→∞ Qxn = z for some z ∈ X. 

Definition 2.5 [19] 

Two self maps P and Q are said to be weakly compatible if they commute at coincidence points. 

Definition 2.6 [20] 

Let (X,M,N,*,⟡).be.an intuitionistic fuzzy metric space and P and Q be self maps on X. A point. x.∈ X is called a 

coincidence point of P and Q iff Px = Qx. 

Definition 2.7 

A pair of self mapping (P,Q).of an intuitionistic fuzzy metric space (X,M,N,*,⟡).is said to be Occasionally weakly 

compatible if there. is a point in X which is coincidence point of P and Q at which P and Q commute. 

Lemma 2.1 [3] 

Let (X, M, N,*, ⟡). be intuitionistic fuzzy metric space and for all x,y in X, t> 0 and if for a numbers	∈ (0,1), 

M(x,y,st) ≤ M(x,y,t) and N(x,y, st) ≥ N(x,y,t). Then x= y. 

Lemma 2.2 

Let P and Q be a self maps in an intuitionistic fuzzy metric space. (X,M,N,*,⟡).and let P and Q have a unique 

point of.coincidence, z = Px = Qx, then z is the unique common fixed point of P and Q.. 
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Lemma 2.3 [3] 

Let {zn} is a sequence in an intuitionistic fuzzy metric space (X, M, N,*, ⟡). If there exists a.constant...s ∈ (0,1) 

such that  

M (zn, zn+1, st) ≥ M (zn-1, zn, t ),  

N (zn, zn+1, st) ≤.N (zn-1, zn, t ), for all n = 0,1,2,… 

Then {zn} is a Cauchy sequence in X. 

MAIN.RESULT  

Let A, B, S and T be self maps of a complete intuitionistic fuzzy metric space. (X, M, N,*, ⟡) satisfying the 

following. Conditions: 

• A(X) ⊆ T(X), B(X) ⊆ S(X), 

• S and T are continuous, 

• There exists k ∈.(0,1) such that for all x,y ∈ X and t>o, 

M (Ax,By,kt) ≥ M (Sx,Ty,t) * ½ ( M(Sx,Ax,t) + M(Ty,By,t) ) * M(Sx,By,t) 

N (Ax,By,kt) ≤ N(Sx,Ty,t) ⟡.½ ( N(Sx,Ax,t) + N(Ty,By,t) ) ⟡ N(Sx,By,t) 

If the pairs (A,S).and (B,T) are occasionally weakly compatible mapping on X. Then A,B,S and T have a unique 

common fixed point on X.  

Proof – AS A(X) ⊆ T(X) and B (X) ⊆ S(X)., then let.x0.∈.X be arbitrary. Now construct a sequence { yn} 

such.that..y2n +1 = Ax 2n = Tx2n+1., y2n+2 = Bx2n+1 = Sx2n+2, for n = 0,1,2,…  

We first show that {yn} is a cauchy sequence in X. 

Now by (3), we get  

M( Ax2n,Bx2n+1, kt ).= M( y2n+1, y2n+2, kt ) 

= M(Sx2n, Tx2n+1, t) * ½ ( M( Sx2n,, Ax2n, t ) + M(Tx2n+1, Bx2n+1,t) ) * M(Sx2n, Bx2n+1,t) 

≥ M(y2n, y2n+1,t) *.½ (M(y2n,y2n,t ) + M(y2n+1, y2n+1, t ) ) * M ( y2n,y2n,, t) 

M (y2n+1, y2n+2, kt) ≥ M( y2n, y2n+1,t ) 

Similarly, we can get  

M(2n+2, y2n+3, kt) ≥ M ( y2n+1, y2n+2,t ) 

Hence, we have  

M(yn+1, yn+2, kt ) ≥ M(yn,yn+1,t )........................…………………………………………………………… ………(i) 

N( y2n+1, y2n+2, kt ) = N (Ax2n, Bx2n+1, kt ) 

= N(Sx2n, Tx2n+1, t) ⟡ ½ ( N( Sx2n,, Ax2n, t ) + M(Tx2n+1, Bx2n+1,t) ) ⟡ N(Sx2n, Bx2n+1,t) 
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≤ N(y2n, y2n+1,t) ⟡.½ (M(y2n,y2n,t ) + M(y2n+1, y2n+1, t ) ) ⟡ M ( y2n,y2n,, t) 

N (y2n+1, y2n+2, kt) ≤ N( y2n, y2n+1,t ) 

Similarly, we have 

N(2n+2, y2n+3, kt). ≤.N ( y2n+1, y2n+2,t ) 

Hence, we have  

N(yn+1, yn+2, kt ).≤. N(yn,yn+1,t ).............................................................................................................…… ……..(ii) 

Equation (i) and (ii), shows that {yn} is a Cauchy sequence. Since X is complete then {yn} converges to some 

point z.∈ X and so the subsequence,   

{Ax2n} → z, {Bx2n+1} → z.............................……………………………………………………………….……(iii) 

{Sx2n} →z, {Tx2n+1} →z.....................................................................................................................................…(iv) 

Since (A,S) is occasionally weakly compatible mapping,then we have.Az.= Sz., and (B,T) is owc.mapping,then 

We have.Bz = Tz. 

Now, by (3), we have  

M(Az, Bx2n+1,kt) ≥ M( Sz,Tx2n+!,t ) * ½.( M( Sz, Az,t ) + M(Tx2n+1,Bx2n+1,t) ) * M(Sz, Bx2n+1,t) 

= M(Az, Tx2n+1,t) * ½.( M( Az,Az,t ) + M.(Tx2n+1,Bx2n+1,t) ) * M(Az, Bx2n+1,t) 

Taking limit n→∞,and using (iii) and (iv)., we get 

M(Az,z,kt). ≥ M(Az,z,t) * ½.( 1, M(z,z,t) ) * M(Az, z, t) 

M(Az,z,kt) ≥ M(Az,z,t)  

Similarly, we get  

N(Az, Bx2n+1,kt) ≤ N( Sz,Tx2n+!,t ) ⟡ ½.( N( Sz, Az,t ) + N(Tx2n+1,Bx2n+1,t) ) ⟡N(Sz, Bx2n+1,t) 

= N(Az, Tx2n+1,t) ⟡ ½.( N( Az,Az,t ) + N (Tx2n+1,Bx2n+1,t) ) ⟡ N (Az, Bx2n+1,t) 

Taking limit n→∞,and using (iii) and (iv)., we get 

N(Az,z,kt). ≤ N(Az,z,t) ⟡ ½.( 1, N(z,z,t) ) ⟡.N (Az, z, t) 

N(Az,z,kt) ≤ N(Az,z,t)  

It follows that, from Lemma 2.1, Az= z. Since Az = Sz, therefore z =Az = Sz  

Again by (3), we get  

M ( x2n, Bz, kt ) ≥ M(Sx2n, Bz t) * ½ ( M(Sx2n, Ax2n,t ) + M(Bz,Bz,t) ) * M(Sx2n, Bz,t) 

Taking limit n→∞,and using (iii) and (iv)., we get 

M(z,Bz,kt) ≥ M(z,Bz,t) * ½ ( M(z,z,t) + 1 ) * M(z,Bz,t) 
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M(z,Bz,t) ≥ M (z, Bz,t)  

Similarly, we get  

N ( x2n, Bz, kt ) ≤.N(Sx2n, Bz t) ⟡ ½ ( N(Sx2n, Ax2n,t ) + N(Bz,Bz,t) ) ⟡ N(Sx2n, Bz,t) 

Taking limit n→∞, and using (iii) and (iv), we get 

N(z,Bz,kt). ≤.N(z,Bz,t) ⟡ ½ ( M(z,z,t) + 1 ).⟡ N (z,Bz,t) 

N(z,Bz,t).≤.N (z, Bz,t)  

It follows that, from Lemma2.1, z = Bz, since Bz =Tz, hence it follows that.z = Bz = Tz. 

Thus, we have  

z= Az = Sz =Bz =Tz, hence from this we conclude that z is a common fixed pint of A, B,S and T. 

UNIQUENESS 

Let z1 be another common fixed point of A,B,S and T.  

Then, z = Az= Bz =Sz =Tz..and z1 = Az=Bz=Sz=Tz  

Now, by (3), 

M(z,z1,kt) = M(Az,Bz1,kt) 

≥ M(Sz, Tz1,t) * ½( M(Sz,Az,t) + M(Tz1, Bz1, t)) * M(Sz, Bz1,t) 

≥ M(z, z1,t) * ½ ( M(z, z1, t) + M(z1, z1,t ) ) * M(z1, z1,t).  

M(z, z1,kt) ≥ M(z,z1,t) 

And, 

N(z,z1,kt) = N(Az,Bz1,kt) 

≤N(Sz, Tz1,t) ⟡ ½( N(Sz,Az,t) + N(Tz1, Bz1, t) ) ⟡ N(Sz, Bz1,t) 

≤ N(z, z1,t) ⟡ ½ ( N(z, z1, t) + N(z1, z1,t ) ) ⟡ N(z1, z1,t).  

Hence, from Lemma 2.1, we get z = z1. This completes the proof 

Corollary 3.2  

Let (X,M,N,*,⟡) be a complete intuitionistic fuzzy metric space and let A,B,S and T be a self.. mappings of X 

satisfying (1) –(3) of theorem 3.1 and there exist k ∈.(0,1) such that  

M (Ax, Bx,kt ) ≥ M (Sx,Ty,t) * M(Ax, Sx,t) * M(By,Ty,t) * M(By, Sx, 2t) * M(Ax, Ty,t) 

N(Ax, Bx,kt ) ≤ N(Sx,Ty,t) ⟡ N(Ax, Sx,t).⟡ N(By,Ty,t).⟡ N (By, Sx, 2t).⟡ N(Ax, Ty,t)  

For.every x,y ∈ X and t > 0.Then A,B,S and T.have a unique common fixed point in X. 

Corollary 3.3 
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Let (X,M,N,*,⟡) be a complete intuitionistic fuzzy metric space and let A,B,S and T be a self. mappings of X 

satisfying (1) –(3) of theorem 3.1 and there exist k ∈.(0,1) such that  

M (Ax, Bx,kt ) ≥ M (Sx,Ty,t) * M(Sx, Ax,t) * M(Ax,Ty,t)  

N(Ax, Bx,kt ) ≤ N(Sx,Ty,t) ⟡ N(Sx, Ax,t).⟡ N(Ax, Ty,t)  

For.every x,y ∈ X and t > 0.Then A,B,S and T.have a unique common fixed point in X. 
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